Joint Graduate Seminar on 20 Dec 2011

Solving Protein Structure by Gamers Playing Foldit

PhD. Student: Haokui ZHOU

Supervisor: Prof. Guoping ZHAO

Clinical Microbial Genomics Laboratory
Department of Microbiology
The Chinese University of Hong Kong

What is a protein? sequence -> structure -> function

- A chain (sequence) of amino acids
 - made up of 20 amino acids
 - main chain & side chain
- Folds into 3D structure (shape)
 - folding of the backbone (main chain)
 - 3D arrangement of the side chains
- Biological functions
 - Binding to substrates (receptor, ligand, ...)
 - Catalyzing chemical reactions

Hierarchy of protein structure

Primary structure (amino acid sequence)

Secondary structure (α-helix, β-sheet, loop, ...)

Tertiary structure
(3D assembly of secondary structures)

Quaternary structure (Complex structures of multiple subunits)

Quaternary structure complex of protein molecules

Protein_structure@wiki

Protein 3D structure determination (physical methods)

- X-ray crystallography
 - x-rays pass through a crystal of protein
 - produce a diffraction pattern
 - calculate the electron density map
 - decipher the molecular bonds
- Nuclear Magnetic Resonance (NMR)
 - a solution of protein is placed in a magnetic field
 - determine frequencies on the resonance of atoms in the protein
- Cryo-electron microscopy (frozen)
 - a form of transmission electron microscopy (EM)
 - sample is studied at cryogenic temperatures (liquid nitrogen temperatures)

Protein 3D structure prediction (computational methods)

- Ab initio modeling
 - start from primary protein sequence
 - find protein conformation with minimized free energy
 - a big challenge of computational biology
- Comparative modeling
 - start from homologues protein with known structure
 - map similar sequence regions to identify similar structures and refinements
- Fold recognition
 - thread sequence onto template structure with folds

The state-of-the-art Rosetta methods

Predicts local folds

using threading or multiple alignments

Links domains

using energy functions (hydrophobic burial, hydrogen bonding, and electrostatics)

Simons, K. T., et al. Proteins Suppl. 1999, 3, 171–176

The Rosetta methods minima energy searching and limitations

- Protein takes a native structure with the lowest free energy
- Computational searching algorithms may sample local minima foldings (local traps)
- The searching space is immense

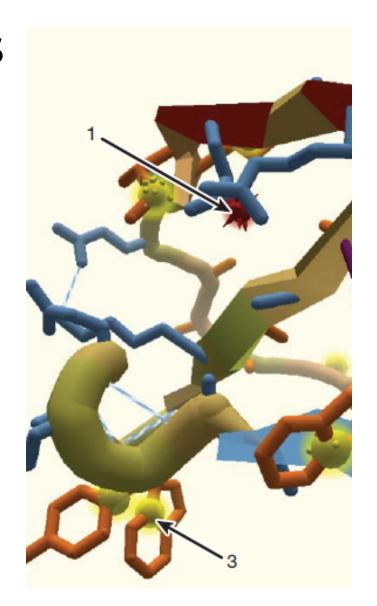
Anfinsen, C. B. Science 1973, 181, 223–230

Foldit: a story of social success

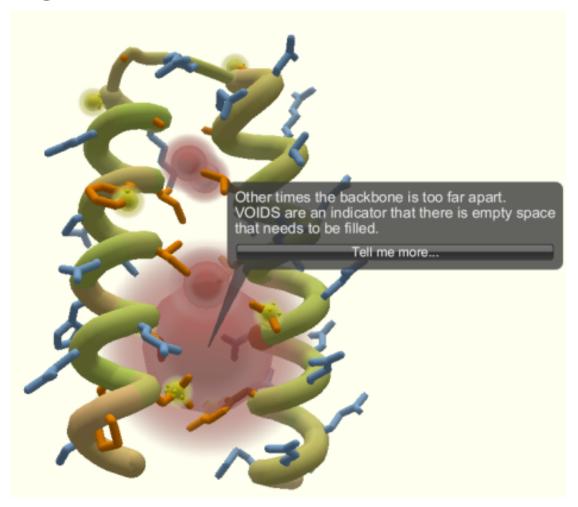
- Outperform many prediction algorithms in the CASP9 contest.
- Key in solving the crystal structure of Mason-Pfizer Monkey Virus (M-PMV) retroviral protease.

What's the game? Rosetta algorithms + Motivated social gamers

To win the game tips for high scoring


- Compact blob
 - core
 - surface
- Polar/charged core + nonpolar surface
- Nonpolar core + polar/charged surface
- Hydrogen bonds
- Local motifs

hydrophobic amino acids (black spheres) hydrophilic amino acids (white spheres)


How to play (1) shake the side-chains

- Side chains too close
 - Side chain clash
 - Indicated by red stars
- use SHAKE to fix clashes
- •
- hydrophobic side chain
 - exposed (yellow blob)
- hydrophilic side chain

How to play (2) backbone packing

- Backbone
 - too close (collide)
 - too apart (gaps)
- Pull the backbone manually
- Or use the WIGGLE
 to improve the
 backbone
 automatically

How to play (3) hydrogen bonding

- zig-zag sheets line up together
- connect these sheets with RUBBER BANDS
- deal with problematic segments by using the REBUILD tool

How to play (4) Hydrophobics and hydrophilics

- Orange sidechains are HYDROPHOBIC
- EXPOSEDS may appear on unburied hydrophobics
- Blue sidechains need plenty of space (outward)
- rotate with the TWEAK tool

Play and contributing ...

- Software availability
 - http://fold.it/portal/info/science
- Community and wikis
 - http://foldit.wikia.com/wiki/Foldit_Wiki
- Puzzles releases
 - http://fold.it/portal/puzzles

Thanks for your attention:)